Problems for Week Four

Problem One: Concept Checks

You know the drill. Here's a review from the topics from last week.

- i. Give two examples of binary relations over the set \mathbb{N} .
- ii. What three properties must a binary relation have to have in order to be an equivalence relation? Give the first-order definitions of each of those properties. For each definition of a property, explain how you would write a proof that a binary relation *R* has that property.
- iii. If R is an equivalence relation over a set A and a is an element of A, what does the notation $[a]_R$ mean? Intuitively, what does it represent?
- iv. What does the notation $f: A \rightarrow B$ mean?
- v. Let $f: A \to B$ be a function. Express, in first-order logic, what property f has to satisfy to be an injection. Then, based on the structure of that formula, explain how you would write a proof that f is injective.
- vi. Negate your statement from part (v) and simplify it as much as possible. Then, based on the structure of your formula, explain how you would write a proof that f is not injective.
- vii. Let $f: A \to B$ be a function. Express, in first-order logic, what property f has to satisfy to be a surjection. Then, based on the structure of that formula, explain how you would write a proof that f is surjective.
- viii. Negate your statement from part (vii) and simplify it as much as possible. Then, based on the structure of your formula, explain how you would write a proof that *f* is not surjective.
- ix. Let $f: A \to B$ be a function. What properties must f have to be a bijection? How would you write a proof that f is bijective?
- x. What would you need to prove to show that f is not a bijection?
- xi. Let $f: A \to B$ and $g: B \to C$ be functions. What does the notation $f \circ g$ mean? How would you evaluate $(f \circ g)(x)$?

Problem Two: Equivalence Relations

This question explores various properties of equivalence relations.

i. In lecture, we proved that the binary relation \sim over \mathbb{Z} defined as follows is an equivalence relation:

$$a \sim b$$
 if $a + b$ is even.

Consider this new relation # defined over \mathbb{Z} :

$$a # b$$
 if $a + b$ is odd.

Is # an equivalence relation? If so, prove it. If not, disprove it.

ii. How many equivalence classes are there for the ~ relation defined above? What are they?

Problem Three: Inverse Relations

Let R be a binary relation over a set A. We can define a new relation over A called the *inverse relation of R*, denoted R^{-1} , as follows:

$$xR^{-1}y$$
 if yRx

This question explores properties of inverse relations.

- i. What is the inverse of the \leq relation over \mathbb{Z} ? Briefly justify your answer.
- ii. What is the inverse of the = relation over \mathbb{Z} ? Briefly justify your answer.
- iii. Prove or disprove: if R is an equivalence relation over A, then R^{-1} is an equivalence relation over A.

Problem Four: Monotone Functions

A function $f: \mathbb{R} \to \mathbb{R}$ is called *monotone increasing* if the following is true:

$$\forall x \in \mathbb{R}. \ \forall y \in \mathbb{R}. \ (x < y \rightarrow f(x) < f(y)).$$

This problem explores properties of monotone increasing functions.

- i. Prove or disprove: every monotone increasing function is injective.
- ii. Prove or disprove: every injective function from \mathbb{R} to \mathbb{R} is monotone increasing.

Problem Five: Involutions

A function $f: A \to A$ is called an *involution* if f(f(x)) = x for all $x \in A$.

- i. Find three different examples of involutions from \mathbb{Z} to \mathbb{Z} . Briefly justify your answers.
- ii. Prove that if f is an involution, then f is a bijection.

Problem Six: Functions and Relations – Together!

Let $f: A \to B$ be an arbitrary function. Define a new binary relation \sim over A as follows:

$$x \sim y$$
 if $f(x) = f(y)$

Prove that \sim is an equivalence relation over A.