Problems for Week Four

Problem One: Concept Checks

You know the drill. Here's a review from the topics from last week.
i. Give two examples of binary relations over the set \mathbb{N}.
ii. What three properties must a binary relation have to have in order to be an equivalence relation? Give the first-order definitions of each of those properties. For each definition of a property, explain how you would write a proof that a binary relation R has that property.
iii. If R is an equivalence relation over a set A and a is an element of A, what does the notation $[a]_{R}$ mean? Intuitively, what does it represent?
iv. What does the notation $f: A \rightarrow B$ mean?
v. Let $f: A \rightarrow B$ be a function. Express, in first-order logic, what property f has to satisfy to be an injection. Then, based on the structure of that formula, explain how you would write a proof that f is injective.
vi. Negate your statement from part (v) and simplify it as much as possible. Then, based on the structure of your formula, explain how you would write a proof that f is not injective.
vii. Let $f: A \rightarrow B$ be a function. Express, in first-order logic, what property f has to satisfy to be a surjection. Then, based on the structure of that formula, explain how you would write a proof that f is surjective.
viii. Negate your statement from part (vii) and simplify it as much as possible. Then, based on the structure of your formula, explain how you would write a proof that f is not surjective.
ix. Let $f: A \rightarrow B$ be a function. What properties must f have to be a bijection? How would you write a proof that f is bijective?
x. What would you need to prove to show that f is not a bijection?
xi. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. What does the notation $f \circ g$ mean? How would you evaluate $(f \circ g)(x)$?

Problem Two: Equivalence Relations

This question explores various properties of equivalence relations.
i. In lecture, we proved that the binary relation \sim over \mathbb{Z} defined as follows is an equivalence relation:
$a \sim b \quad$ if $a+b$ is even.
Consider this new relation $\#$ defined over \mathbb{Z} :
$a \# b \quad$ if $a+b$ is odd.
Is \# an equivalence relation? If so, prove it. If not, disprove it.
ii. How many equivalence classes are there for the \sim relation defined above? What are they?

Problem Three: Inverse Relations

Let R be a binary relation over a set A. We can define a new relation over A called the inverse relation of \boldsymbol{R}, denoted R^{-1}, as follows:

$$
x R^{-1} y \quad \text { if } \quad y R x
$$

This question explores properties of inverse relations.
i. What is the inverse of the $<$ relation over \mathbb{Z} ? Briefly justify your answer.
ii. \quad What is the inverse of the $=$ relation over \mathbb{Z} ? Briefly justify your answer.
iii. Prove or disprove: if R is an equivalence relation over A, then R^{-1} is an equivalence relation over A.

Problem Four: Monotone Functions

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called monotone increasing if the following is true:

$$
\forall x \in \mathbb{R} . \forall y \in \mathbb{R} .(x<y \rightarrow f(x)<f(y))
$$

This problem explores properties of monotone increasing functions.
i. Prove or disprove: every monotone increasing function is injective.
ii. Prove or disprove: every injective function from \mathbb{R} to \mathbb{R} is monotone increasing.

Problem Five: Involutions

A function $f: A \rightarrow A$ is called an involution if $f(f(x))=x$ for all $x \in A$.
i. Find three different examples of involutions from \mathbb{Z} to \mathbb{Z}. Briefly justify your answers.
ii. \quad Prove that if f is an involution, then f is a bijection.

Problem Six: Functions and Relations - Together!

Let $f: A \rightarrow B$ be an arbitrary function. Define a new binary relation \sim over A as follows:

$$
x \sim y \quad \text { if } \quad f(x)=f(y)
$$

Prove that \sim is an equivalence relation over A.

